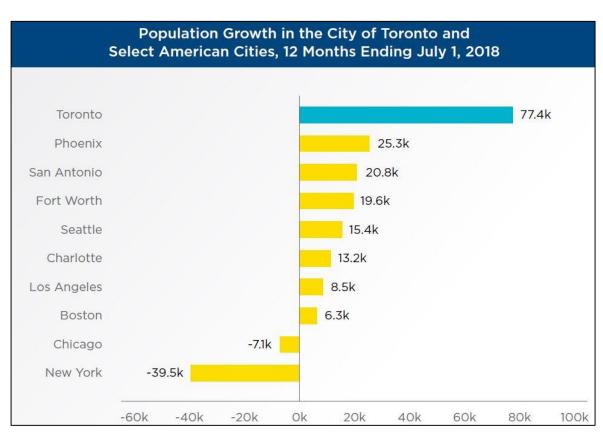
The Meadoway

Multi-use Trail Class Environmental Assessment

Public Information Centre 3

October 23rd, 2019



** 111 1111 1111 1111 1111

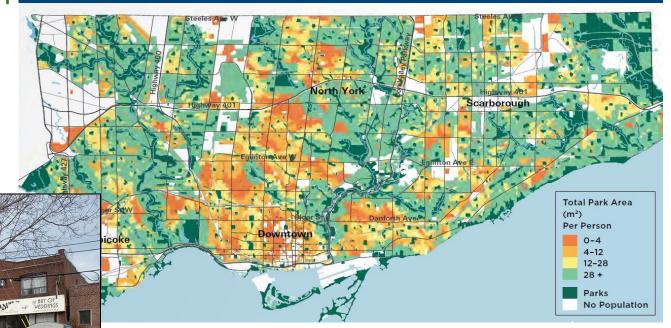
Toronto's Current (and future) Context

Population Growth

Toronto Foundation – Vital Signs 2019

Toronto's Current (and future) Context

- **Population Growth**
- Transportation



Toronto's Current (and future) Context

Population Growth

Transportation

 Access to healthy, greenspace

City of Toronto Parkland Supply, 2016

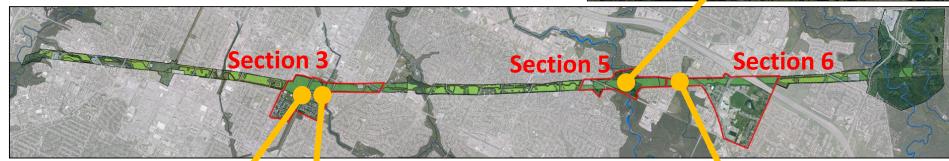
** 111 1111 1 141 41 41

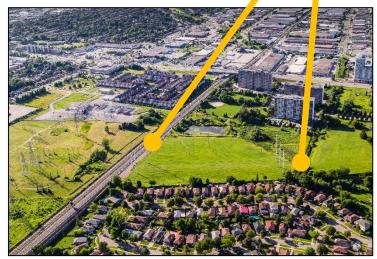
Reimagining Corridors – Untapped Potential

The Meadoway – Community Powered Greenspaces

- Builds off of the success of the SCBT
- Restores 200 ha of meadow and completes over 16 linear km of multi-use trail
- Establishes a full link between downtown Toronto and Rouge National Urban Park

" Wi cart 114 41 41 -




Focus Areas and Trail "Anchors"

- 16 linear kilometre corridor
- 7 sections 3 "Incomplete" → Focus of Class EA
- Hydraulic and geofluvial assessments determined optimal bridge crossings = trail "anchors"

** 111 (111) 110) 41 41 41 41

Preferred Trail Alignments

- Preferred alignments remain within the hydro corridor (Section 3 and 5)
- Section 6 routes south of 401 Hwy via UTSC and utilizes dedicated bike lane on Conlins Rd.

S5 - Scarborough Golf Club - Neilson Rd.

" Wi com 100 11011

S3 - Kennedy Rd. – Thomson Memorial

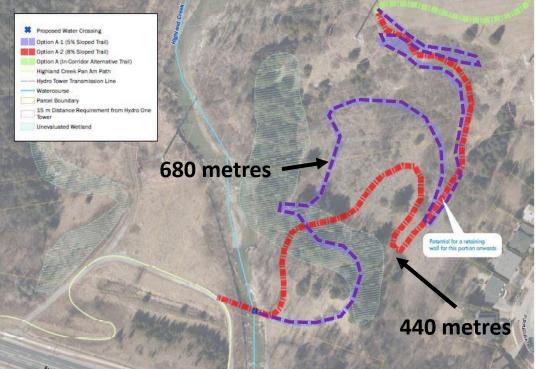
S6 - Neilson Rd. - Conlins Rd.

Alternative Design Concepts

"Alternative methods of implementing the preferred trail alignment"

Section 5 – Highland Creek East Slope

** 111 1111 1111 1111



Section 6 - Chartway Blvd

** 111 1111 1111 1111

Section 5: Highland Creek Alignment Design Concepts

- The state of	1		69
A	*	*	A size
			100
A LIGHT			

5% Grade Trail Example

Highland Creek Valley Slope

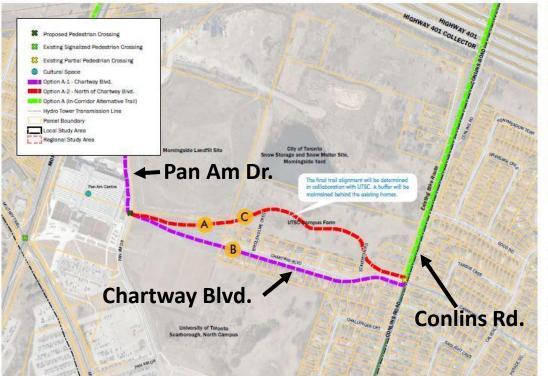
10% Grade Trail Example

Example of Rest Area in Lower Don

OPTION A-1: 5% Grade	OPTION A-2: 8% Grade
V	V
	V
✓	
V	V
	V
	OPTION A-2

Option A-2 is the Proposed Preferred:

- · Minimizes impacts to valley slope and vegetation due to smaller footprint
- Lower capital costs due to simplified construction and maintenance/operation requirements
- · Opportunity for restoration and invasive species management
- · Accessibility enhancements such as rest nodes, trail signage, and wayfinding


Making Trails Accessible for All Users

While the majority of The Meadoway trails will be relatively flat, the proposed preferred at Highland Creek will need to travel along 8% grades (in some portions) to reduce ecological impacts. To optimize access for all users, trail design will consider: rest areas at key locations, proper signage, maintaining a slope <5% (where feasible), and other safety features.

** 111 1111 1 144 41 41

Section 6:

Chartway Blvd. Alignment Design Concepts

√iew A	
No.	

Option A-2 Facing West Option A-1 Chartway Blvd.

Facing West

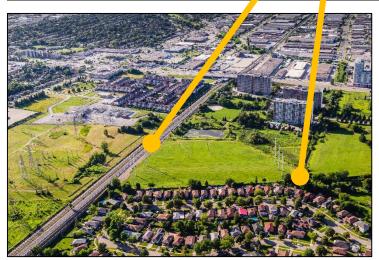
Option A-2 Facing East

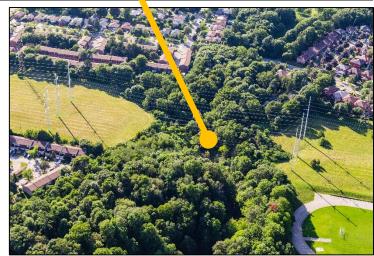
Existing bike route on Conlins Rd.

OBJECTIVES	OPTION A-1:	OPTION A-2:
Provide a positive user experience		✓
Protect and enhance natural features	✓	V
Maintain a safe environment for all potential trail users		✓
Be good neighbours	✓	V
Be cost effective		
PROPOSED PREFERRED		OPTION A-2
√ = Best meets the project objective		

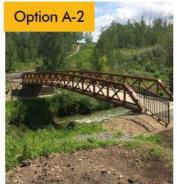
Option A-2 is the Proposed Preferred:

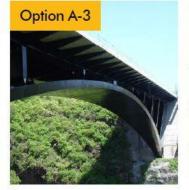
- · Maximizes connection to urban greenspace, as routed north of Chartway Blvd. away from residential properties
- · Improves safety by removing users from the residential street
- · Increases opportunity for education and community stewardship
- · Minimizes potential impacts to adjacent neighbours with vegetated buffer between trail and homes


Pedestrian Bridge Crossings


- TTC/GO Stouffville Rail Corridor
- Southwest Tributary of Highland Creek
- Milliken Branch of Highland Creek
- Ellesmere Ravine

** 111 1111 111 11 11 11 11 11 11





Section 6:

Ellesmere Ravine Pedestrian Water Crossing Design Concepts

Stress-Ribbon Bridge

(Source: Michael Goff)

- Single span bridge comprised of suspension cables embedded in a concrete deck
- This complex design is uncommon in Canada, making it an expensive structure to design and build

3-Span Steel Girder Bridge

(Source: Rapid-Span)

- Common bridge type that uses steel or concrete beams (girders) as the means of supporting a deck
- Two concrete piers constructed within the ravine are required in order to provide structural support

Arch Bridge

(Source: Demathieu and Bard)

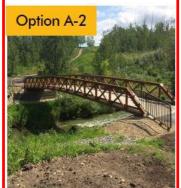
- Bridge comprised of a structural arch with piers and support structures (abutments) built within the rayine
- Arch bridges provide a unique aesthetic but require larger abutments, increasing costs and impacts to the ravine

OBJECTIVES	OPTION A-1	OPTION A-2	OPTION A-3
Provide a positive user experience	V		
Protect and enhance natural features	V	V	
Maintain a safe environment for all potential trail users		✓	✓
Be good neighbours	/	V	
Be cost effective		V	
PROPOSED PREFERRED		OPTION A-2	

√ = Best meets the project objective

Option A-2 is the Proposed Preferred:

- Maximizes users' interaction with ravine via unobstructed design and future opportunities for viewing platforms
- · Accessible for all users (compliant with Accessibility for Ontarians with Disabilities Act)
- A common bridge structure simplifies design, construction, maintenance, and overall costs
- Construction of support piers will have short-term impacts to a localized area of ravine habitat


Ellesmere Ravine Pedestrian Water Crossing Design Concepts

Stress-Ribbon Bridge

(Source: Michael Goff)

- Single span bridge comprised of suspension cables embedded in a concrete deck
- This complex design is uncommon in Canada, making it an expensive structure to design and build

3-Span Steel Girder Bridge

(Source: Rapid-Span)

- Common bridge type that uses steel or concrete beams (girders) as the means of supporting a deck
- Two concrete piers constructed within the ravine are required in order to provide structural support

Arch Bridge

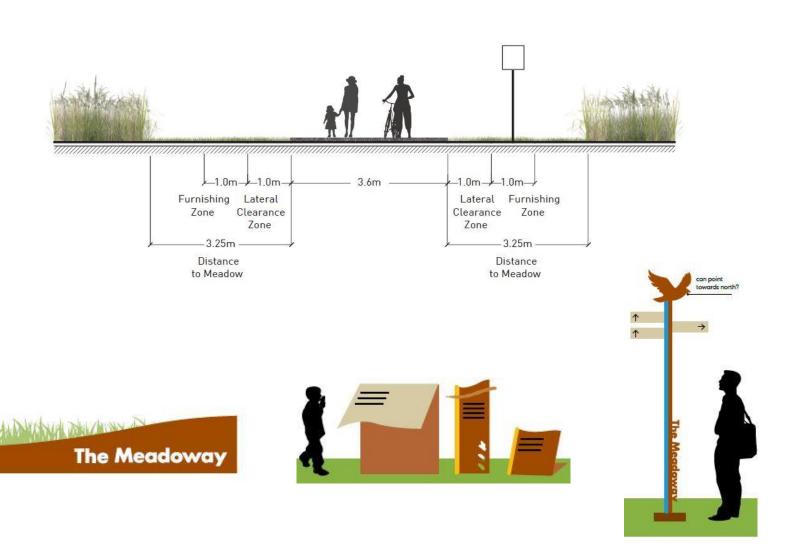
(Source: Demathieu and Bard)

- Bridge comprised of a structural arch with piers and support structures (abutments) built within the ravine
- Arch bridges provide a unique aesthetic but require larger abutments, increasing costs and impacts to the ravine

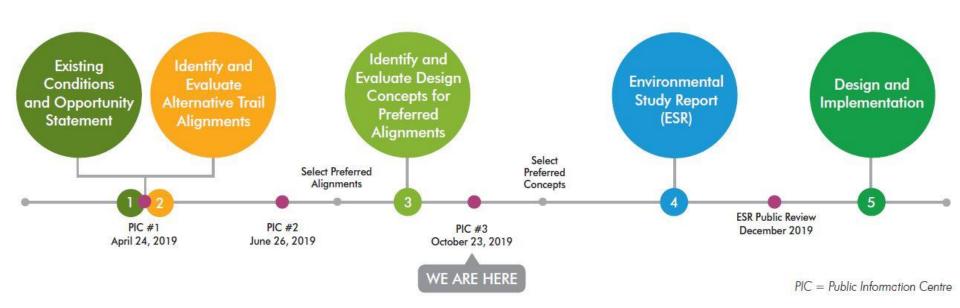
OBJECTIVES	OPTION A-1	OPTION A-2	OPTION A-3
Provide a positive user experience	V		
Protect and enhance natural features	V	✓	
Maintain a safe environment for all potential trail users		✓	✓
Be good neighbours	V	V	
Be cost effective		V	
PROPOSED PREFERRED		OPTION A-2	

√ = Best meets the project objective

Option A-2 is the Proposed Preferred:


- Maximizes users' interaction with ravine via unobstructed design and future opportunities for viewing platforms
- · Accessible for all users (compliant with Accessibility for Ontarians with Disabilities Act)
- A common bridge structure simplifies design, construction, maintenance, and overall costs
- Construction of support piers will have short-term impacts to a localized area of ravine habitat

ALL DESIGNS SUBJECT TO HYDRO ONE INC. (HONI)
PERMITS AND APPROVALS


11 111 1111 1111 1111 1111

Trail Configuration, Design, and Elements

Section 1 - In-Corridor Trail

Looking Ahead

themeadoway.ca | info@themeadoway.ca

** 111 1111 111 111 111 111

